Essential AI Development Tools and Frameworks in 2024
3 min read
Essential AI Development Tools and Frameworks in 2024
Modern AI development requires a robust toolkit. Here's a comprehensive guide to the most essential tools and frameworks for AI development in 2024.
Deep Learning Frameworks
1. PyTorch
The most popular framework for research and production:
import torch
import torch.nn as nn
class SimpleNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super().__init__()
self.model = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(hidden_size, output_size),
nn.Softmax(dim=1)
)
def forward(self, x):
return self.model(x)
# Example usage
model = SimpleNN(784, 128, 10)
optimizer = torch.optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
2. TensorFlow/Keras
Google's framework with excellent production tools:
import tensorflow as tf
from tensorflow.keras import layers, models
def create_cnn():
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(10, activation='softmax')
])
return model
MLOps Tools
1. Model Tracking with MLflow
import mlflow
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
def train_with_tracking(X, y, model_params):
mlflow.start_run()
# Log parameters
mlflow.log_params(model_params)
# Train model
X_train, X_test, y_train, y_test = train_test_split(X, y)
model = create_model(**model_params)
model.fit(X_train, y_train)
# Log metrics
accuracy = accuracy_score(y_test, model.predict(X_test))
mlflow.log_metric("accuracy", accuracy)
# Save model
mlflow.sklearn.log_model(model, "model")
mlflow.end_run()
return model
2. Experiment Management with Weights & Biases
import wandb
from torch.utils.data import DataLoader
def train_with_wandb(model, train_loader, val_loader, config):
wandb.init(project="my-project", config=config)
for epoch in range(config.epochs):
train_loss = train_epoch(model, train_loader)
val_loss = validate(model, val_loader)
wandb.log({
"epoch": epoch,
"train_loss": train_loss,
"val_loss": val_loss
})
Data Processing Tools
1. Data Validation with Great Expectations
import great_expectations as ge
def validate_dataset(df):
"""
Validate dataset using Great Expectations
"""
context = ge.get_context()
suite = context.create_expectation_suite("my_suite")
validator = ge.dataset.PandasDataset(df)
# Add expectations
validator.expect_column_values_to_not_be_null("important_feature")
validator.expect_column_values_to_be_between("age", 0, 120)
validator.expect_column_values_to_be_unique("id")
# Validate
results = validator.validate()
return results
2. Feature Engineering with Feature-engine
from feature_engine.encoding import OneHotEncoder
from feature_engine.imputation import MeanMedianImputer
from feature_engine.selection import DropConstantFeatures
def create_preprocessing_pipeline():
"""
Create a feature preprocessing pipeline
"""
pipeline = Pipeline([
('drop_constants', DropConstantFeatures()),
('imputer', MeanMedianImputer()),
('encoder', OneHotEncoder())
])
return pipeline
Model Deployment
1. FastAPI for Model Serving
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import joblib
app = FastAPI()
class PredictionInput(BaseModel):
features: list[float]
class PredictionOutput(BaseModel):
prediction: float
probability: float
@app.post("/predict", response_model=PredictionOutput)
async def predict(input_data: PredictionInput):
try:
model = joblib.load("model.joblib")
prediction = model.predict([input_data.features])[0]
probability = model.predict_proba([input_data.features])[0].max()
return PredictionOutput(
prediction=prediction,
probability=probability
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
2. Docker for Containerization
# Dockerfile for ML application
FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
EXPOSE 8000
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
Best Practices
-
Development Environment
- Use virtual environments
- Maintain requirements.txt
- Document dependencies
- Use version control
-
Model Development
- Track experiments
- Version datasets
- Monitor metrics
- Test thoroughly
-
Deployment
- Use containers
- Implement CI/CD
- Monitor performance
- Plan scaling strategy
Essential Tools Checklist
-
Development
- PyTorch/TensorFlow
- Jupyter Notebooks
- VS Code with extensions
- Git for version control
-
MLOps
- MLflow
- Weights & Biases
- DVC for data versioning
- Great Expectations
-
Deployment
- Docker
- Kubernetes
- FastAPI/Flask
- Prometheus/Grafana
Conclusion
Having the right tools is crucial for efficient AI development. This toolkit provides a solid foundation for building, training, and deploying AI models. Remember to:
- Choose tools based on project needs
- Keep up with tool updates
- Maintain documentation
- Follow best practices for each tool